The NSGA-II is one of the most prominent algorithms to solve multi-objective optimization problems. Despite numerous successful applications, several studies have shown that the NSGA-II is less effective for larger numbers of objectives. In this work, we use mathematical runtime analyses to rigorously demonstrate and quantify this phenomenon. We show that even on the simple OneMinMax benchmark, where every solution is Pareto optimal, the NSGA-II also with large population sizes cannot compute the full Pareto front (objective vectors of all Pareto optima) in sub-exponential time when the number of objectives is at least three. Our proofs suggest that the reason for this unexpected behavior lies in the fact that in the computation of the crowding distance, the different objectives are regarded independently. This is not a problem for two objectives, where any sorting of a pair-wise incomparable set of solutions according to one objective is also such a sorting according to the other objective (in the inverse order).
translated by 谷歌翻译
工业推荐系统通常提出包含来自多个子系统的结果的混合列表。实际上,每个子系统都使用自己的反馈数据进行了优化,以避免不同子系统之间的干扰。但是,我们认为,由于\ textit {数据稀疏},此类数据使用可能会导致次优的在线性能。为了减轻此问题,我们建议从包含网络尺度和长期印象数据的\ textit {super-domain}中提取知识,并进一步协助在线推荐任务(下游任务)。为此,我们提出了一个新颖的工业\ textbf {k} nowl \ textbf {e} dge \ textbf {e} xtraction和\ textbf {p} lugging(\ textbf {keep})框架,这是一个两阶段的框架其中包括1)超级域上有监督的预训练知识提取模块,以及2)将提取的知识纳入下游模型的插件网络。这使得对在线推荐的逐步培训变得友好。此外,我们设计了一种有效的经验方法,用于在大规模工业系统中实施Keep时保持和介绍我们的动手经验。在两个现实世界数据集上进行的实验表明,保持可以实现有希望的结果。值得注意的是,Keep也已部署在阿里巴巴的展示广告系统上,带来了$+5.4 \%$ CTR和$+4.7 \%\%$ rpm的提升。
translated by 谷歌翻译
在本报告中,我们建议针对四个EGO4D挑战任务,包括自然语言查询(NLQ),MOMMER QUERY(MQ),对象状态变更分类(OSCC),以及PNR定位(PNR)。尤其是,我们将最近发布的EGO4D数据集\ cite {grauman2021ego4d}从预处理数据集,预处理目标和开发集中从egecentric vlp中提升。基于上述三个设计,我们开发了一个验证的视频语言模型,该模型能够将其以自我为中心的视频文本表示或仅视频表示形式转移到几个视频下游任务中。我们的Egentric VLP在NLQ上实现10.46r@1&iou @0.3,MQ上的10.33地图,OSCC上的74%ACC,PNR上的0.67秒错误。该代码可在https://github.com/showlab/egovlp上找到。
translated by 谷歌翻译
在本报告中,我们为Epic-kitchens-100多实体检索(miR)挑战提出了一个基于视频的预处理(VLP)解决方案\ cite {kevin202222222egovlp}。尤其是,我们将最近发布的EGO4D数据集\ cite {grauman2021ego4d}从预处理数据集,预处理目标和开发集中从egecentric vlp中提升。基于上述三个设计,我们开发了一个预验证的视频语言模型,该模型能够将其自我为中心的视频文本表示为mir基准。此外,我们设计了一种自适应多构度最大损失,以有效地微调模型并为可靠的推理配备双重效果技术。我们最好的单个模型在挑战测试集上获得了强劲的性能,其中47.39%的地图和61.44%的NDCG。该代码可在https://github.com/showlab/egovlp上找到。
translated by 谷歌翻译
分布算法(EDA)是优化算法,在搜索空间上学习分布,可以轻松地采样良好的解决方案。大多数EDA的关键参数是样本量(人口尺寸)。如果人口规模太小,则概率模型的更新基于很少的样本,从而导致遗传漂移的不期望效应。人口太大避免了遗传漂移,但减慢了这一过程。基于对种群规模如何导致遗传漂移的最新定量分析,我们为EDA设计了一种智能的正式机制。通过停止运行,当遗传漂移的风险很高时,它会自动以良好的参数状态运行EDA。通过数学运行时分析,我们证明了此智能总结方案的一般性能保证。这特别表明,在许多情况下,已知最佳(特定问题)参数值,重新启动方案会自动找到这些,从而导致渐近最佳性能。我们还进行了广泛的实验分析。在四个经典的基准问题上,我们清楚地观察了人口规模对性能的关键影响,并且我们发现智能重点方案会导致具有最佳参数值可获得的性能。我们的结果还表明,先前基于理论的最佳人口规模的建议远非最佳群体,从而导致表现明显不如通过智能重点方案获得的表现。我们还对文献,最大切割问题和两部分问题的两个组合优化问题进行了PBIL(跨熵算法)进行实验。同样,我们观察到,智能设施的机制比文献中建议的人口规模更高,从而导致表现更好。
translated by 谷歌翻译
如今,数据驱动的深度神经模式已经在点击率(CTR)预测上已经显示出显着的进展。不幸的是,当数据不足时,这种模型的有效性可能会失败。为了处理这个问题,研究人员经常采用勘探战略来审查基于估计奖励的项目,例如UCB或汤普森采样。在CTR预测的开发和探索的背景下,最近的研究已经尝试利用预测不确定性以及模型预测作为奖励得分。但是,我们认为这种方法可以使最终排名分数偏离原始分布,从而影响在线系统中的模型性能。在本文中,我们提出了一种名为\ textbf {a} dversarial \ textbf {g} vlient driven \ textbf {e} xploration(年龄)的新颖探索方法。具体地,我们提出了一个伪探索模块来模拟渐变更新过程,其可以近似模型的探索项目的样本的影响。此外,为了更好的探索效率,我们提出了一种动态阈值单元,以消除具有低电位CTR的样本的效果。在开放式学术数据集上证明了我们方法的有效性。同时,年龄也部署在现实世界展示广告平台中,所有在线指标都得到了显着改善。
translated by 谷歌翻译
非主导的分类遗传算法II(NSGA-II)是现实应用中最强烈使用的多目标进化算法(MOEA)。然而,与几个通过数学手段分析的几个简单的MOES相反,到目前为止,NSGA-II也不存在这种研究。在这项工作中,我们表明,数学运行时分析也可用于NSGA-II。结果,我们证明,由于持续因素大于帕累托前方大小的人口大小,具有两个经典突变算子的NSGA-II和三种不同的选择父母的方式满足与Semo和GSEMO相同的渐近运行时保证基本ineminmax和Lotz基准函数的算法。但是,如果人口大小仅等于帕累托前面的大小,那么NSGA-II就无法有效地计算完整的帕累托前部(对于指数迭代,人口总是错过帕累托前部的恒定分数) 。我们的实验证实了上述研究结果。
translated by 谷歌翻译
最佳运输(OT)自然地出现在广泛的机器学习应用中,但可能经常成为计算瓶颈。最近,一行作品建议大致通过在低秩子空间中搜索\ emph {transport计划}来解决OT。然而,最佳运输计划通常不是低秩,这往往会产生大的近似误差。例如,当存在Monge的\ EMPH {Transport Map}时,运输计划是完整的排名。本文涉及具有足够精度和效率的OT距离的计算。提出了一种用于OT的新颖近似,其中运输计划可以分解成低级矩阵和稀疏矩阵的总和。理论上我们分析近似误差。然后设计增强拉格朗日方法以有效地计算运输计划。
translated by 谷歌翻译
近年来,图表匹配中有一系列的研究活动,旨在在两个图表中找到节点的对应关系,并位于许多人工智能应用的核心。然而,匹配具有部分重叠的异构图形仍然是现实世界应用中的具有挑战性的问题。本文提出了第一种实用的学习 - 匹配方法来满足这一挑战。该提出的无监督方法采用新的部分OT范例同时学习运输计划和节点嵌入。在一对一的方式中,整个学习过程被分解成一系列易于解决的子过程,每个子程序仅处理单个类型节点的对齐。还提出了一种搜索传输质量的机制。实验结果表明,所提出的方法优于最先进的图形匹配方法。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译